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Abstract—The extension of classical rough set model is a very
hot and interesting topic. In this paper, our aim is to present
the first type of graded rough set (FGRS) based on rough mem-
bership function. The concepts of k−regions, k−rough degree,
etc., are proposed firstly, and some of important properties are
investigated in this rough set model. Moreover, the model has
the corresponding properties with classical rough set model. In
addition, relative k−reduction is considered and an example is
used to illustrate its validity. By comparing, one can find that the
model is a generalization of variable precision rough set model.

Index Terms—General binary relation; Graded rough set;
Precision coefficient; Rough membership function; Variable pre-
cision rough set

I. INTRODUCTION

The rough set theory, which was proposed by Pawlak[1], is
an extension of the classical set theory and can be regarded as a
soft computing tool to deal with the uncertainty or imprecision
information. It was well known that this theory is based upon
the classification mechanism, from which the classification can
be viewed as an equivalence relation and knowledge granule
induced by the equivalence relation be a partition of universe.
Its main idea is to induce the decision making of problem
or rules of classification by knowledge reduction. On account
of the special thought and novelty methods contained in this
theory, the research has recently roused great interest in the
theoretical and application fronts, such as machine learning,
pattern recognition, data analysis, and so on.

In Pawlak’s original rough set theory, partition or equiva-
lence (indiscernibility) relation is an important and primitive
concept. But, partition or equivalence relation is still restric-
tive for many applications. One of these limitations is that
the classification dealt with must be completely correct or
determinately, in other words, it only consider completely
“containing” or “belonging to”. Another is that the object
set is known and the results obtained can only be used to
some special objects. To address this issue, several interesting
and meaningful extensions to equivalence relation have been
proposed in the past, such as tolerance relations[2], similarity
relations[3], and so on[4]. Particularly, W. Zikrao [5] estab-
lished the variable precision rough set model (VPRS) with
a majority inclusion threshold β. The main idea of VPRS
is that it admits the existence of some wrong classification

ratio to such an extent that it is capable to get some useful
information from irrelevant information. Up to now, various
theories and methods have been proposed to deal with the
graded or precision of inclusion and some useful works have
been done in [6-13].

In order to apply this theory to reflect the uncertainty mea-
surement of knowledge, in this paper, the first type of graded
rough set (FGRS) based on rough membership function in the
sense of general binary relation is proposed by considering one
model of the definition of rough approximation. Furthermore,
some characterization and properties of this rough set model
are discussed carefully, which is very useful for future re-
search works such as uncertainty measurement of knowledge,
extracting rules, and so on.

II. PRELIMINARIES

The following recalls necessary concepts required in our
work. Detailed description of the theory can be found in[14].

Definition 2.1 A database system is a triple K = (U,A, F ),
where U = {u1, u2, · · · , un} is set of objects called universe,
A = {a1, a2, · · · , am} is set of attributes, F = {fl | fl : U →
Vl(l ≤ m)} is relation set of U and A, and Vl = {fl(u) | u ∈
U} is the domain of al ∈ A.

A database system K = (U,A, F ) can be called a database
system with decision or decision system if A can be divided
into set C of condition attributes and set D of decision
attributes such that A = C

∪
D and C

∩
D = ∅.

Any subset R of U × U is called a relation on U , and for
any (x, y) ∈ U ×U , if (x, y) ∈ R, then we say x has relation
R with y, and denote this relationship as xRy. Hence, for a
database system K = (U,A, F ), RB = {(x, y) ∈ U × U |
fl(x) ∗ fl(y), ∀ al ∈ B} represents a binary relation with
respect to B on U , where “ ∗ ” be “ ≤ ”, “ ≥ ” or “ = ”.
[ui]B = {uj | (ui, uj) ∈ RB} can be called relationship class
of x and U/RB = {[ui]B | ∀ui ∈ U} be one classification or
knowledge on U .

Definition 2.2 Let K = (U,A, F ) be a database system,
X ⊆ U and B ⊆ A. The two sets

RB(X) = {u ∈ U | [u]B ⊆ X}

RB(X) = {u ∈ U | [u]B
∩

X ̸= ∅}
(1)
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are called the lower and the upper approximation of X ,
respectively. Moreover, if RB(X) = RB(X), then X is exact
set, otherwise, X is rough set.

Definition 2.3 Let K = (U,A, F ) be a database system,
X ⊆ U and B ⊆ A. Rough degree of X with respect to B,
denoted by ρB(X), is defined as

ρB(X) = 1−
|RB(X)|
|RB(X)|

,

where ρB(X) ∈ [0, 1].
Definition 2.4 Let K = (U,A, F ) be a database system,

X ⊆ U and B ⊆ A. The positive region, negative region and
boundary region of X with respect to B, denoted by posB(X),
negB(X) and bnB(X) respectively, are defined as

posB(X) = RB(X),

negB(X) = U −RB(X),

bnB(X) = RB(X)−RB(X).

Definition 2.5 Let K = (U,A, F ) be a database system,
X ⊆ U and B,C ⊆ A. The positive and negative region of
RC with respect to RB , denoted by posB(RC) and negB(RC)
respectively, are defined as

posB(RC) =
∪

X∈U/RC

posB(X),

negB(RC) =
∪

X∈U/RC

negB(X).

An attribute al ∈ B is dispensable in B if U/RB =
U/RB−{al}, otherwise al is indispensable in B. The collection
of all indispensable attributes in A is called core of A and de-
noted by core(A). We say that B ⊆ A is independent if every
attribute in B is indispensable, otherwise B is dependent. The
subset B ⊆ A is called a reduction in A if B is independent
and U/RB = U/RA, which is denoted by red(B).

III. THE FIRST TYPE OF GRADED ROUGH SET BASED ON
ROUGH MEMBERSHIP FUNCTION

In this section, we start to investigate the first type of graded
rough set based on rough membership function in database
systems based on general binary relation. At first, the concept
of rough membership function is proposed and some important
properties are discussed.

A. Rough membership function

Definition 3.1[15] Let K = (U,A, F ) be a database system
based on binary relation, X ⊆ U and B ⊆ A. For every
u ∈ U , the rough membership function of u with respect to
RB is defined as

µB
X(u) =

|[u]B
∩
X|

|[u]B |
.

As can be seen from above definition, we have that the
properties of rough membership function listed as follows
without any proof are trivial.

Proposition 3.1 Let K = (U,A, F ) be a database system
based on binary relation and B ⊆ A. If X ⊆ Y , then µB

X(u) ≤
µB
Y (u) for every u ∈ U .
Proposition 3.2 Let K = (U,A, F ) be a database system

based on binary relation and B ⊆ A. µB
X(u) + µB

∼X(u) = 1
holds for any X ⊆ U .

Proposition 3.3 Let K = (U,A, F ) be a database system
based on binary relation and B ⊆ A. For any X ⊆ U , we
have that

(1) µB
X(u) = 1 if and only if u ∈ posB(X).

(2) µB
X(u) = 0 if and only if u ∈ negB(X).

(3) 0 < µB
X(u) < 1 if and only if u ∈ bnB(X).

From above proposition, we see that µB
X(u) represents a

characteristic function of u ∈ U , and from which the fuzzy
set on U , denoted by FB

X = {(u, µB
X(u)) | u ∈ U}, can be

constructed.
Proposition 3.4 Let K = (U,A, F ) be a database system

based on binary relation and B ⊆ A. For any X,Y ⊆ U , we
have that

(1) FB
X

∪
Y ⊇ FB

X

∪
FB
Y .

(2) FB
X

∪
Y = FB

X

∪
FB
Y if either X ⊆ Y or Y ⊆ X .

Proposition 3.5 Let K = (U,A, F ) be a database system
based on binary relation and B ⊆ A. For any X,Y ⊆ U , we
have that

(1) FB
X

∩
Y ⊆ FB

X

∩
FB
Y .

(2) FB
X

∩
Y = FB

X

∩
FB
Y if either X ⊆ Y or Y ⊆ X .

B. The first type of graded rough set

In Pawlak’s rough set theory, the rough approximation may
be redefined by another form, listed as follows, besides the
form in definition 2.1.

RB(X) =
∪

{[u]B | [u]B ⊆ X}

RB(X) =
∪

{[u]B | [u]B
∩

X ̸= ∅}
(2)

In fact, these two forms are equal in the sense of equivalence
relation but (1) and (2) are not equal to each other if the
relationship is not an equivalence relation, and in which case
a respective research of them is worthwhile. Thus, our work
in this paper is to study an extended rough set model based on
the form of equation (1) in the sense of precision coefficient
k(∈ (0.5, 1]), and be called first type of graded rough set, i.e.
FGRS. Note that for no ambiguous, the rough approximations
without consideration of precision coefficient have the form
as defined in definition 2.1.

Definition 3.2 Let K = (U,A, F ) be a database system
based on binary relation, X ⊆ U and B ⊆ A. The k−lower
and k−upper approximation of X based on rough membership
function then may be defined as

Rk
B(X) = {u ∈ U | µB

X(u) ≥ k}

Rk
B(X) = {u ∈ U | µB

X(u) > 1− k}
(3)

Moreover, X is k−exact if and only if Rk
B(X) = Rk

B(X),
otherwise, X is k−rough.

By comparing with classical rough set model, one can
obtain the following property.
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Theorem 3.1 Let K = (U,A, F ) be a database system
based on binary relation, X ⊆ U and B ⊆ A, then the
following properties are trivial.

(L1) Rk
B(∅) = ∅,

(U1) Rk
B(∅) = ∅;

(L2) Rk
B(U) = U ,

(U2) Rk
B(U) = U ;

(L3) Rk
B(X) =∼ Rk

B(∼ X),
(U3) Rk

B(X) =∼ Rk
B(∼ X);

(L4) Rk
B(X

∪
Y ) ⊇ Rk

B(X)
∪
Rk

B(Y ),
(U4) Rk

B(X
∩

Y ) ⊆ Rk
B(X)

∩
Rk

B(Y );
(L5) Rk

B(X
∩

Y ) ⊆ Rk
B(X)

∩
Rk

B(Y ),

(U5) Rk
B(X

∪
Y ) ⊇ Rk

B(X)
∪
Rk

B(Y );
(L6) l ≤ k =⇒ Rk

B(X) ⊆ Rl
B(X),

(U6) l ≤ k =⇒ Rl
B(X) ⊆ Rk

B(X);
(L7) X ⊆ Y =⇒ Rk

B(X) ⊆ Rk
B(Y ),

(U7) X ⊆ Y =⇒ Rk
B(X) ⊆ Rk

B(Y );
(8) Rk

B(X) ⊆ Rk
B(X).

Proof: It is straightforward.
In fact, one can find that equation (3) is equal to equation

(1) when precision coefficient k = 1.
Definition 3.3 Let K = (U,A, F ) be a database system

based on binary relation and k ∈ (0.5, 1]. For any X ⊆ U
and B ⊆ A, k−positive region, k−negative region and
k−boundary region of X with respect to RB , denoted by
poskB(X), negkB(X) and bnk

B(X) respectively, are defined as

poskB(X) = {u ∈ U | µB
X(u) ≥ k},

negkB(X) = {u ∈ U | µB
X(u) ≤ 1− k},

bnk
B(X) = {u ∈ U | 1− k < µB

X(u) < k}.
Theorem 3.2 Let K = (U,A, F ) be a database system

based on binary relation and k ∈ (0.5, 1]. For any X ⊆ U and
B ⊆ A, we have that X is k−exact if and only if bnk

B(X) = ∅,
otherwise X is k−rough.

Proof: It can be proved by definitions 3.2 and 3.3.
Theorem 3.3 Let K = (U,A, F ) be a database system

based on binary relation and k ∈ (0.5, 1]. For any X ⊆ U and
B ⊆ A, we have that

(1) If k1 < k and X is k−exact, then X is k1−exact.
(2) If k2 > k and X is k−rough, then X is k2−rough.

Proof: It can be proved easily by definition 3.2 and
theorem 3.2.

If X is k−rough for any k ∈ (0.5, 1], then we call X
is absolute k−rough, otherwise X is relative k−rough. In
particular, for every relative k−rough set X , there must exist
k0 ∈ (0.5, 1] such that X is k0−exact.

From above, the following results hold.
Theorem 3.4 Let K = (U,A, F ) be a database system

based on binary relation and k ∈ (0.5, 1]. For any X ⊆ U and
B ⊆ A, we have that

(1) poskB(X) = negkB(∼ X),
(2) bnk

B(X) = bnk
B(∼ X),

(3) If bnk
B(X) = ∅, then poskB(X)

∪
negkB(X) = U ,

where ∼ X = U −X .
Proof: It can be proved by definitions 3.1 and 3.3.

Theorem 3.5 Let K = (U,A, F ) be a database system
based on binary relation and k ∈ (0.5, 1]. For any X ⊆ U and
B ⊆ A, we have that

(1a) RB(X) ⊆ Rk
B(X),

(1b) Rk
B(X) ⊆ RB(X),

(2a) bnk
B(X) ⊆ bnB(X),

(2b) negB(X) ⊆ negkB(X).
Proof: Without loss of generality, we only prove (1a).

For any u ∈ RB(X), we have [u]B ⊆ X . From definition 3.1
we have that µB

X(u) = 1 ≥ k. Hence u ∈ Rk
B(X), that is

RB(X) ⊆ Rk
B(X).

Corollary 3.1 Let K = (U,A, F ) be a database system
based on binary relation and k = 1. For any X ⊆ U and
B ⊆ A, we have that

(1a) RB(X) = Rk
B(X),

(1b) Rk
B(X) = RB(X),

(2a) bnk
B(X) = bnB(X),

(2b) negB(X) = negkB(X).
From theorem 3.5 and corollary 3.1, one can find that

k−positive region and k−negative region of X are decreasing
with respect to k while k−boundary region of X is increasing
with respect to k. In particular, when k approaches 0.5, i.e.
k → 0.5, the following property holds.

Definition 3.4 Let K = (U,A, F ) be a database system
based on binary relation, X ⊆ U and B ⊆ A. The absolute
boundary, that is k → 0.5, is denoted by

bn0.5
B (X) = {u ∈ U | µB

X(u) =
1

2
}.

From above definition we have that
Proposition 3.6 Let K = (U,A, F ) be a database system

based on binary relation, X ⊆ U and B ⊆ A. If k → 0.5, we
have that

(1a) R0.5
B (X) =

k∪
Rk

B(X),

(1b) R0.5
B (X) =

k∩
Rk

B(X),

(2a) bn0.5
B (X) =

k∩
bnk

B(X),

(2b) neg0.5B (X) =
k∪
negkB(X).

Example 3.1 Consider one database system.

Table 1. Database system
U a1 a2 a3 a4 a5
u1 1 2 1 1 1
u2 3 2 2 4 3
u3 1 1 2 2 1
u4 2 1 3 1 2
u5 3 3 2 3 4
u6 3 2 3 4 4

From above table we can obtain a dominance relation RB

with respect to B = {a1, a2, a3, a4, a5} and [ui]B = {uj |
fl(uj) ≥ fl(ui) (∀al ∈ B)}.

If take X = {u1, u3, u5, u6}, Y = {u2, u4} and k = 0.6,
by computing we have that
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R0.6
B (X) = {u1, u3, u5, u6},

R0.6
B (X) = U,

pos0.6B (X) = {u1, u3, u5, u6},
neg0.6B (X) = ∅,
bn0.6

B (X) = {u2, u4};

and

R0.6
B (Y ) = ∅,

R0.6
B (Y ) = {u2, u4},

pos0.6B (Y ) = ∅,
neg0.6B (Y ) = {u1, u3, u5, u6},
bn0.6

B (Y ) = {u2, u4}.

Hence, we can obtain

pos0.6B (X) = neg0.6B (Y ), bn0.6
B (X) = bn0.6

B (Y ).

If let k = 1, by computing we have that
RB(X) = R1

B(X), R1
B(X) = RB(X),

bn1
B(X) = bnB(X), negB(X) = neg1B(X).

C. k−rough degree

It is known that the roughness of every set is induced by the
existence of boundary. The larger the boundary region is, the
rougher the set is, and vice versa. From the ideas in[16], the
concept of k−rough degree is proposed as follows and some
properties of it are discussed.

Definition 3.5 Let K = (U,A, F ) be a database system
based on binary relation and k ∈ (0.5, 1]. For any X ⊆ U and
B ⊆ A, the k−rough degree, denoted by ρkB(X), is defined
as

ρkB(X) = 1−
|Rk

B(X)|

|Rk
B(X)|

.

Obviously k−rough degree reflects the unknown degree for
the set X .

Corollary 3.2 Let K = (U,A, F ) be a database system
based on binary relation and k ∈ (0.5, 1]. For any X ⊆ U and
B ⊆ A, we have that

(1) 0 ≤ ρkB(X) ≤ 1,
(2) X is k−exact if and only if ρkB(X) = 0,
(3) X is k−rough if and only if ρkB(X) > 0.

Theorem 3.6 Let K = (U,A, F ) be a database system
based on binary relation and 0.5 < l ≤ k ≤ 1. ρlB(X) ≤
ρkB(X) holds for any X ⊆ U and B ⊆ A.

Proof: It can be proved by definition 3.5 and item
(L6),(U6) of theorem 3.1.

Theorem 3.7 Let K = (U,A, F ) be a database system
based on binary relation and k ∈ (0.5, 1]. ρkB(X) ≤ ρB(X)
holds for any X ⊆ U and B ⊆ A.

Proof: By theorem 3.1 we have that

|RB(X)| ≤ |Rk
B(X)| and |RB(X)| ≥ |Rk

B(X)|.

Hence
|RB(X)|
|RB(X)|

≤
|Rk

B(X)|

|Rk
B(X)|

.

With definition 3.5, we have that ρkB(X) ≤ ρB(X) holds.
Example 3.2(Continued from Example 3.1) Take X =

{u3, u5, u6} and B = {a1, a2, a3, a4}. If k = 0.68, by
computing we have that

ρ0.68B (X) =
1

2
.

If k = 0.76, by computing we have that ρ0.76B (X) =
2

3
.

Obviously, one can find that ρ0.68B (X) ≤ ρ0.76B (X).

IV. RELATIVE k−REDUCTION

In this section, we introduce the concept of relative
k−reduction of the first graded rough set.

Definition 4.1 Let K = (U,A, F ) be a database system
based on binary relation and k ∈ (0.5, 1]. For any X ⊆ U and
B,C ⊆ A, the k−positive region of RC with respect to RB ,
denoted by poskB(RC), is defined as

poskB(RC) =
∪

X∈U/RC

poskB(X).

Definition 4.2 Let K = (U,C
∪
D,F ) be a database

system based on binary relation, P ⊆ C and Q ⊆ D. relative
k−dependent of P with respect to Q, denoted by γ(P,Q, k),
is defined by

γ(P,Q, k) =
|poskP (RQ)|

|U |
.

Definition 4.3 Let K = (U,C
∪
D,F ) be a database

system based on binary relation and k ∈ (0.5, 1]. al ∈ P ⊆ C
is dispensable in P with respect to Q ⊆ D if poskP (RQ) =
poskP−{al}(RQ), otherwise al is indispensable. We say that
P ⊆ C is relative k−independent if every attribute in P is
indispensable, otherwise P is relative k−dependent.

From above, one can find that relative k−dependent, which
can be regarded as an evaluation for classification ability of
objects with precision coefficient, extends the thought of rough
dependent while it is not equal to rough dependent. Moreover,
it can not be regarded as partial dependent because some of
its properties are weaker than the properties of functional
dependent such as the property of transitive. But we have
that relative k−dependent is equal to rough dependent when
precision coefficient k = 1.

Definition 4.4 Let K = (U,C
∪
D,F ) be a database

system based on binary relation and k ∈ (0.5, 1]. P ⊆ C ia
a relative k−reduction of C with respect to Q ⊆ D, denoted
by redQ(P, k), if and only if

(1) P is relative k−independent with respect to Q ⊆ D,
(2) γ(P,Q, k) = γ(C,Q, k).
The purpose of relative k−reduction of C is to find a

minimal subset of C to keep every decision rule invariant.
Example 4.1 Consider one database system.
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Table 2. Decision system
U a1 a2 a3 d
u1 Y Y 0 N
u2 N Y 1 Y
u3 Y Y 2 Y
u4 N Y 0 N
u5 N N 1 N
u6 N Y 2 Y
u7 N N 1 Y
u8 N Y 2 N

Assuming that the relationship is equivalence relation and
precision coefficient k = 0.75, then by computing we have
that

poskC(R{d}) = {u1, u2, u4}

while

posk{a1}(R{d}) = ∅,
posk{a2}(R{d}) = ∅,
posk{a3}(R{d}) = {u1, u4},
posk{a1,a2}(R{d}) = ∅,
posk{a1,a3}(R{d}) = {u1, u3, u4},
posk{a2,a3}(R{d}) = {u1, u2, u4}.

Thus, {a1, a3} and {a2, a3} is the relative k−reduction of C,
that is,

red{d}(C, 0.75) = {a1, a3}
∨

{a2, a3}.

Furthermore, one can obtain that relative core of C is {a3}.

V. CONCLUSION

It is well-known that rough set theory has been regarded as
a mathematical tool to deal with the uncertainty or imprecision
information. But, it is still restrictive for many applications.
Thus, inspired by Ziarko’s model of variable precision rough
set approach, the rough membership function based first type
of graded rough set in database systems based on binary
relation is proposed in this paper and some of its properties
are discussed in detail. Compared with classical rough set, one
can find that the graded rough set model defined in this paper
is not only the generalization of graded rough set, but also the
generalization of variable precision rough set model based on
equivalence relation. In the future we will further study other
types of graded rough sets, knowledge reduction and so on.
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